

Tetrahedron Letters 42 (2001) 7953-7955

TETRAHEDRON LETTERS

Calcined sodium nitrate/natural phosphate: an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media

Saïd Sebti,^{a,*} Abderrahim Solhy,^a Rachid Tahir,^a Saïd Boulaajaj,^a José A. Mayoral,^{b,*} José M. Fraile,^b Abdelali Kossir^c and Hammou Oumimoun^c

^aLaboratoire de Chimie Organique Appliquée et Catalyse, Université Hassan II, Faculté des Sciences Ben M'Sik, BP 7955, Casablanca, Morocco

^bDepartamento de Quimica Organica y Quimica Fisica, Instituto de Ciencia de Materiales de Aragon, Facultad de Ciencias, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain

^cCentre d'Etudes et de Recherches sur les Phosphates Minéraux (CERPHOS), Groupe Office Chérifien des Phosphates (OCP), 37 Bd My Ismail, Casablanca, Morocco

Received 20 May 2001; revised 7 September 2001; accepted 10 September 2001

Abstract—The modification of natural phosphate (NP) with sodium nitrate by calcination produces an extremely efficient basic catalyst for the Claisen–Schmidt condensation. A large variety of chalcones is easily obtained in high yield at room temperature using only a catalytic amount of NaNO₃/NP. © 2001 Elsevier Science Ltd. All rights reserved.

Some chalcones can be used as anti-oxidants,¹ antiinflammatories,² pulmonary carcinogenesis inhibitors,³ anti-malarials,⁴ and anti-leishmanials.⁵ These products can be obtained by Claisen-Schmidt condensation. For this reaction, the use of basic solids, such as alumina,⁶ barium hydroxide,7 hydrotalcite and zeolite,8 has received much attention over the last years. Natural phosphates have been found to be interesting catalysts, able to promote Knoevenagel reactions,9 hydrations of nitriles,¹⁰ synthesis of α -hydroxyphosphonates,¹¹ Friedel–Crafts alkylations,¹² and Michael reactions.¹³ Recently, we have reported that the Claisen-Schmidt condensation can be catalysed by natural phosphate, alone or activated with an ammonium salt.¹⁴ In spite of the good results obtained, the utility of this method is limited by the need of using a large amount of catalyst.

In this paper, we describe a highly efficient method for the Claisen-Schmidt condensation catalysed by natural phosphate doped with sodium nitrate (NaNO₃/NP). Natural phosphate comes from an extracted ore in the region of Khouribga (Morocco). The fraction of 100-400 µm grain size has been washed with water, calcined at 900°C for 2 h, washed again, calcined at 900°C for 0.5 h and ground (63–125 μ m). The structure of NP is similar to that of fluorapatite $(Ca_{10}(PO_4)_6F_2)$, as shown by X-ray diffraction pattern and chemical analysis.¹⁴ $NaNO_3/NP$ was prepared by adding a mass (m_1) of natural phosphate to an aqueous solution of a mass (m_0) of sodium nitrate. The mixture was stirred vigorously at room temperature, evaporated to dryness and dried at 100°C for 2 h. The solid obtained was calcined for 1 h to give a new modified phosphate (NaNO₃/NP). The X-ray diffraction pattern of the modified phos-

Scheme 1.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)01698-7

Keywords: natural phosphate; sodium nitrate; heterogeneous catalysis; chalcones; Claisen–Schmidt condensation. * Corresponding author. Fax: 212 22 24 96 72; e-mail: saidsebti@yahoo.fr

phate calcined at 900°C, showed the apparition of two new phases which can be attributed to sodium phosphate and calcium oxide. This phenomenon can be due to a possible reaction in the solid state between sodium nitrate and the natural phosphate. On the contrary, the structures of NP and NaNO₃ are not modified by calcination of NaNO₃/NP at 300 or 500°C, in agreement with their low catalytic activity. It is worth noting that both sodium phosphate^{9–11} and calcium oxide¹⁵ have been used in heterogeneous catalysis. Thus, they can contribute to an increase in the basic activity of NP. However, the intensity of their peaks in X-ray pattern of NaNO₃/NP is very low.

The reactions were carried out between arylaldehydes 1 (2.5 mmol) and acetophenones 2 (2.5 mmol) at room temperature in the presence of a catalytic amount of NaNO₃/NP (0.1 g) in methanol (1–3 mL) (Scheme 1). First of all we tried to determine the best nitrate/NP ratio ($r=m_0/m_1$). With this aim, we carried out the synthesis of chalcone **3a** with 0.1 g of NaNO₃/NP using different nitrate/NP ratios (r=1/2, 1/3, 1/5, 1/8, and 1/15 w/w). The yields obtained after 24 h of reaction (98, 78, 67, 8 and 2%, respectively) show that sodium nitrate/NP=1/2 w/w is the optimal composition.

Thereafter, we carried out the synthesis of several chalcones **3** using 0.1 g of NaNO₃/NP (1/2) (Table 1). All products were isolated, purified, and analysed by ¹H, ¹³C NMR, IR, and MS. Only the *E*-isomers were obtained. The yields were, in general, very high and exceeded 90% after 24 h of reaction, except for the chalcones obtained by condensation of arylaldehydes with *p*-methoxyacetophenone (**3f**, **3g** and **3h**). The low reactivity of this acetophenone, due to the presence of an electron-donor group, accounts for the yields in the

 Table 1. Synthesis of chalcones by Claisen–Schmidt condensation

	Product			$Yield/\% \ (time/h)^{a,b}$	
	\mathbb{R}^1	\mathbb{R}^2	R ³	NaNO ₃ /NP	NP
3 a	Н	Н	Н	98 (18)	2 (24)
3b	Cl	Н	Н	94 (16)	5 (24)
3c	Н	NO_2	Н	94 (16)	9 (24)
3d	OCH ₃	ΗĨ	Н	91 (36)	10 (24)
3e	Н	Н	OCH ₃	90 (24)	0 (24)
3f	Cl	Н	OCH ₃	74 (24)	0 (24)
			5	93 (48)	
3g	Н	NO_2	OCH ₃	55 (24)	0 (24)
		-	5	81 (48)	
3h	OCH ₃	Н	OCH ₃	40 (24)	0 (24)
	-		-	70 (48)	
3i	Н	Н	NO_2	92 (16)°	3 (24)
3j	Cl	Н	NO_2	94 (16) ^c	5 (24)
3k	Н	NO_2	NO_2	86 (16) ^c	2 (24)
		-	-	95 (24)°	
31	OCH ₃	Н	NO_2	93 (16) ^c	2 (24)

^a Yields in products isolated by distillation under vacuum or recrystallisation.

^b All products have been identified by ¹H, ¹³C NMR, IR and MS. ^c Reaction carried out in presence of 3 mL of methanol.

range of 40–74% after 24 h, which can be increased to 70–93% with longer reaction times. It is important to note that, under the same conditions, unmodified natural phosphate displayed almost no activity, *p*-methoxy-acetophenone did not react and with acetophenone yields did not exceed 10% after 24 h. It is even possible to further reduce the amount of catalyst. Thus, 78% yield of chalcone **3a** was obtained, after 48 h of reaction, with only 0.05 g of NaNO₃/NP. It is then clear that doping NP with sodium nitrate remarkably increases its catalytic activity.

To sum up, the modified natural phosphate $(NaNO_3/NP)$ is a new inorganic reagent, which can represent an important breakthrough in the development of basic solid catalysts. Several chalcones have been synthesised with high yields using catalytic amounts of NaNO₃/NP. This phosphate is easily prepared from inexpensive precursors.

Acknowledgements

Financial assistance of the Ministry of Education, Government of Morocco (PROTARS, P2T3/59) and CICYT (Project MAT99-1176) is gratefully acknowledged. We are also indebted to OCP for financial support and technical assistance.

References

- (a) Mukherjee, S.; Kumar, V.; Prasad, A. K.; Raj, H. G.; Bracke, M. E.; Olsen, C. E.; Jain, S. C.; Parmar, V. S. *Bioorg. Med. Chem.* 2001, *9*, 337; (b) Anto, R. J.; Sukumaran, K.; Kuttan, G.; Rao, M. N. A.; Subbaraju, V.; Kuttan, R. *Cancer Lett.* 1995, *97*, 33.
- (a) Hsieh, H.-K.; Tsao, L.-T.; Wang, J.-P.; Lin, C.-N. J. *Pharm. Pharmacol.* 2000, *52*, 163; (b) Herencia, F.; Ferrandiz, M. L.; Ubeda, A.; Dominguez, J. N.; Charris, J. E.; Lobo, G. M.; Alcaraz, M. J. *Bioorg. Med. Chem. Lett.* 1998, *8*, 1169.
- 3. Wattenberg, L. Lung Cancer 1996, 14, 152.
- Ram, V. J.; Saxena, A. S.; Srivastava, S.; Chandra, S. Bioorg. Med. Chem. Lett. 2000, 10, 2159.
- Zhai, L.; Chen, M.; Blom, J.; Theander, T. G.; Christensen, S. B.; Kharazmi, A. J. Antimicrob. Chemother. 1999, 43, 793.
- Varma, R. S.; Kabalka, G. W.; Evans, L. T.; Pagni, R. M. Synth. Commun. 1985, 15, 279.
- (a) Sinisterra, J. V.; G-Raso, A.; Cabello, J. A.; Marinas, J. M. Synthesis 1984, 502; (b) Alcantara, A. R.; Marinas, J. M.; Sinisterra, J. V. Tetrahedron Lett. 1987, 28, 1515; (c) Aguilera, A.; Alcantara, A. R.; Marinas, J. M.; Sinisterra, J. V. Can. J. Chem. 1987, 65, 1165; (d) Sathyanarayana, S.; Krishnamurty, H. G. Curr. Sci. 1988, 57, 1114; (e) Climent, M. S.; Marinas, J. M.; Mouloungui, Z.; Le Bigot, Y.; Delmas, M.; Gaset, A.; Sinisterra, J. V. J. Org. Chem. 1989, 54, 3695.
- (a) Climent, M. J.; Garcia, H.; Primo, J.; Corma, A. *Catal. Lett.* **1990**, *4*, 85; (b) Tichit, D.; Lhouty, M. H.; Guida, A.; Chiche, B. H.; Figueras, F.; Auroux, A.; Bartalini, D.; Garrone, E. *J. Catal.* **1995**, *151*, 50; (c)

Climent, M. J.; Corma, A.; Iborra, S.; Primo, J. J. Catal. 1995, 151, 60; (d) Guida, A.; Lhouty, M. H.; Tichit, D.; Figueras, F.; Geneste, P. Appl. Catal. 1997, 164, 251.

- 9. Sebti, S.; Saber, A.; Rhihil, A. Tetrahedron Lett. 1994, 35, 9399.
- 10. Sebti, S.; Rhihil, A.; Saber, A.; Hannafi, N. Tetrahedron Lett. 1996, 37, 6555.
- 11. Sebti, S.; Rhihil, A.; Saber, A.; Laghrissi, M.; Boulaajaj,

S. Tetrahedron Lett. 1996, 37, 3999.

- 12. Sebti, S.; Rhihil, A.; Saber, A. Chem. Lett. 1996, 8, 721.
- 13. Sebti, S.; Boukhal, H.; Hannafi, N.; Boulaajaj, S. *Tetrahedron Lett.* **1999**, *40*, 6207.
- 14. Sebti, S.; Saber, A.; Rhihil, A.; Nazih, R.; Tahir, R. Appl. Catal. A 2001, 206, 217.
- 15. Seki, T.; Akutsu, K.; Hattori, H. Chem. Commun. 2001, 1000.